‘WOUND’ – Multi-omics translational research for delayed-healing wounds

We applied for a NWO perspectief research grant in order to bring wound care to this century.

In the Netherlands over 400.000 patients suffer from delayed-healing wounds. This creates a personal, but also societal burden, of 3.2 billion Euros. This will grow due to increase of elderly individuals in the Netherlands, likewise in the rest of the world.

In 2013, the National Health Care Institute classified complex wounds as a separate condition (or self-contained process). However, wound care didn’t advance much last century. Current focus is on fighting symptoms, like pain and infections. The right challenge however is to elucidate the underlying pathology and find key parameters that make the wound refrain from healing and can function as (bio)markers to control the quality of selected care. They are a starting point for discovering new treatment modalities and the direct application of available, but not yet applied, treatment modalities.

This program breaks away from the conventional approach by combining leading scientific institutes, key clinical wound care professionals and the relevant users in one consortium. We will harness the latest developments from the fields of systems biology, metabolomics, proteomics, genomics, medical- and data analysis. This enables quick implementation and valorisation of the outcomes towards predictive analysis & diagnosis, personalised interventions and innovative tools for clinicians and patients. Such as point of care diagnostic tools and direct application of a novel wound treatment approach, like anti-biofilm or complement modulation therapies.

We identified three R&D lines:

1.Predictive personalized diagnosis; Multiplex omics- and data analysis strategies will reveal early determinators of patient’s wound healing and starting points for development of personalized treatment modalities.

2. Evaluation and quantification of treatment efficiency; Identify biomolecules through a.o. omics that predict treatment efficiency and disclose key factors for improved healing.

3. Identification, research and demonstrations of new interventions and treatments; Interplay between microbiome and immunomodulation will enable novel treatments such as anti-biofilm or anti-complement therapy.

 

Societal challenges (MU)

This program has a perfect fit with the MU ‘Health and healthcare’. It will deliver predictive tools for clinicians, to be continued in targeted personal treatments which can be either preventive, either curative or both. This enables patients to re-participate sooner, or at all, in our society. Since the consortium also consists of a large group of clinicians and users, we can guarantee a fast implementation trajectory for the tools and outcome of this program. This also makes this program an export generator; since the largest amount of e.g. diabetes patients is to be found in the Americas.

Initiators

  • University of Amsterdam (UvA), Swammerdam Institute for Life Sciences – main applicant
  • ErasmusMC, Research Unit Plastic Surgery
  • University of Twente, Medical Cell Biophysics
  • Amsterdam UMC, Plastic Surgery
  • TUDelft, Chemical engineering

OTHER INSTITUTES and USERS  

  • MeanderMC, Surgery
  • IsalaMC, Surgery
  • IkaziaMC, Surgery
  • AlrijneMC, Wound centre
  • Assocation of Dutch Burns Centres
  • MST, Surgery
  • Davinci clinics
  • TNO
  • Dutch Optics Centre

COMPANIES:

  • BioMedServ BV
  • ICap BV
  • VyCAP BV
  • Biocrates Life Sciences AG
  • CZ
  • Zilveren Kruis
  • Menzis
  • VGZ

Key Enabling Technologies (KET)

The KET’s this program addresses are 1) BioTechnology 2) Quantum- and Nanotechnology and 3) Photonics, both with strong links to 4) ICT. For BioTechnology, the chemistry of (complex) wound care is on large parts terra incognita. The program is an example of an integral system biological approach for health where we explicitly use the ‘Omics’ part.

Digital technologies will enable us to harvest, classify and interpret the data from analysis and for diagnosis, as well as for further development of tools and products. Enriched with quantum- and nanotechnologies, one of the proposed outcomes will be an analytic technique for rapid medical analysis of small blood, fluid and tissue samples.

For Photonics, the program will deliver techniques to perform diagnosis with non-invasive photonic hand held devices and advanced image capturing techniques for early diagnostics, such as novel light therapies for wound treatment with a digital therapy assistant.

Public meeting:  

A public meeting will be held on November 18, at the UV

A. Please contact us for more information.

Contact information:  

Drs. Harm Jaap Smit,  nlhjs@biomedserv.com,  +31 6 45444310

(Prof. dr. A.K. (Age) Smilde, A.K.Smilde@uva.nl, 0205255062)

Leave a Comment

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*

Deze site gebruikt Akismet om spam te verminderen. Bekijk hoe je reactie-gegevens worden verwerkt.