Tag Archives: Ischemia

4 Redenen voor celdood

Voor de genezing van wonden is vijfennegentig van de honderd keer het ontdekken en wegnemen van de oorzaak voldoende. Als dat niet lukt kan een chronische wond ontstaan. Om dan gericht te kunnen interveniëren is sterk vereenvoudigde kennis van enkele processen op celniveau handig. Ik merk op nascholingen dat die kennis veel inzicht oplevert.

Basaal in het ontstaan en genezen van wonden is inzicht in de manier waarop cellen omgaan met stress. In de meeste wonden is in de wond rand geen abrupte overgang van gezond weefsel naar necrose maar is er een zone waarin de omstandigheden voor cellen steeds slechter worden. Die zone is onder te verdelen in een gezond deel, een deel onder stress, een deel wat herstelbaar schade heeft en een deel wat onherstelbare schade heeft. Deze zone indeling is voor ieder type weefsel anders waardoor bijvoorbeeld een ondermijning kan ontstaan doordat een onderliggend weefsel al onherstelbaar schade kent terwijl de schade van het bovenliggend weefsel nog herstelbaar is.

Cel-stress en -schade ontstaat vaak door de inwerking van krachten op het weefsel, zuurstofgebrek en/of gebrek aan voedingsstoffen. Stress en schade kunnen leiden tot celdood, de meest voorkomende manier van celdood is echter apoptose, geprogrammeerde celdood waarbij het lichaam ervoor kiest om cellen op te ruimen.

De inwerking van krachten op cellen leidt tot druk, trek- en schuifkrachten. Drukverhoging kan leiden tot het lek raken van de celmembraan, trekkrachten kunnen leiden tot het scheuren van cellen en schuifkrachten kunnen dat allebei doen. Bij de inwerking van krachten op cel lijkt druk de grootste oorzaak van problemen maar dat is waarschijnlijk niet het geval. Weefsels zijn vaak anisotroop is, dat betekent dat ze niet even sterk zijn in alle richtingen. Veel weefsels hebben een speciale constructie om krachten uit een bepaalde richting te verwerken. Als er uit een “verkeerde” richting aan een cel of weefsel wordt geduwd of getrokken kan zij gemakkelijk vervormen en beschadigen. Daarnaast leidt grotere vervorming vaak tot het lekken van de celmembraan waardoor er calciumionen in de cel komen wat direct leidt tot problemen[1,2]. De cel meet de krachten die op haar inspelen met de hulp van de celkern[3], daarmee kan ze vaststellen hoe groot de stress en schade is en reageren.

De beschikbaarheid van zuurstof kan ook voor problemen zorgen. Een humane cel is voor de zuurstofvoorziening vrijwel volledig afhankelijk van hemoglobine. Als een cel niet langer door rode bloedlichaampjes van zuurstof kan worden voorzien zal zij sterven. Problemen met zuurstof leiden op het algemeen tot problemen in het mitochondrion. Als een cel zuurstoftekort heeft zal het mitochondrion hierop reageren met aangepaste processen voor het blijven produceren van energie waarbij ook de reactieve zuurstofdeeltjes en stikstofoxiden ontstaan. Deze reactieve stoffen vertellen de cel en haar omgeving dat er sprake is van (oxidatieve) stress. Om dat te veel reactieve zuurstofdeeltjes leiden tot cel schade zorgen deze stoffen ook voor het activeren van het immuunsysteem zodat eventueel niet meer levensvatbare cellen worden opgeruimd. Hierdoor kan het weefsel ook met minder zuurstof blijven functioneren[4].

Gebrek aan bouw en brandstoffen kunnen het metabolisme in de cel verstoren waardoor een cel moeite krijgt om zichzelf in stand te houden. Hierbij wordt vooral de werking van het endoplasmatisch reticulum verstoord.

Het endoplasmatisch reticulum is belangrijk het cel metabolisme. Het heeft de rol van een chemische fabriek. Als het endoplasmatisch reticulum niet langer in staat is om haar werkzaamheden goed uit te voeren spreekt men van endoplasmatisch reticulum stress (ER-stress)[5].

Als nu een cel problemen krijgt door krachten, zuurstofgebrek of gebrek aan bouwstoffen, worden er allerlei stoffen in de cel geproduceerd die, als problemen groot zijn, de samenwerking van de celkern, de mitochondria en het endoplasmatisch reticulum verder verstoren[2]. Het is natuurlijk in het belang van een cel om ervoor te zorgen dat de omgeving weet van de problemen. De cel gaat signalen uitzenden waardoor omliggende cellen kunnen reageren. Deze signalen zijn heel specifiek zodat de omliggende cellen en de rest van het lichaam vrij nauwkeurig weten wat de problemen zijn[6,7].

Cellen zitten samen in een weefsel, om de kwaliteit van het weefsel in stand te houden is het zinvol zijn om cellen die niet goed functioneren op te ruimen. Dit is de meest voorkomende reden van celdood. Een cel wordt opgeruimd als zij versleten of beschadigd is, als zijn niet goed functioneert of als de huidige functionaliteit niet meer nodig is. Het lichaam ruimt cellen het liefst op een gecontroleerde manier op waarbij de cellen netjes worden afgebroken en gerecycled, apoptose. Als cellen niet netjes worden opgeruimd maar uiteen vallen spreekt men van necrose, ongecontroleerde celdood wat leidt tot het tot het vrijkomen van cel restanten in het weefsel. Deze resten die wijzen op ongecontroleerde processen te hebben een sterke signaalfunctie, dit zijn de zogenoemde damps en pamps (damage-associated molecular patterns en pathogen-associated molecular patterns).

Omdat de aanwezigheid van deze signalen wijst op ongecontroleerde omstandigheden reageert het lichaam hier met een sterke immuunrespons op. Zowel apoptose als necrose kennen een aantal varianten[8].

Het zal duidelijk zijn dat een cel niet meteen overlijdt aan druk, zuurstofgebrek of gebrek aan bouwstoffen. Op praktische gronden is een indeling te maken in stress (geen schade, eng stress) – verwonding (herstelbaar, eng injury) – schade (onherstelbaar – eng damage). Voor stress is geen regeneratie nodig, verwond weefsel is in principe volledig te regenereren, alleen beschadigd weefsel wordt niet volledig geregenereerd maar de belangrijkste functies worden hersteld. Overigens is het aangedane gebied dus vaak groter dan de wond zelf, op het oog vitaal weefsel hoeft dat niet te zijn.

Weefsel kan door zich snel aan te passen onder moeilijke omstandigheden overleven. Het lichaam houdt daarbij zorgvuldig de gebeurtenissen in de gaten en zal op basis van de signalen reageren. Het kan dan op korte termijn bijvoorbeeld cellen met signaalstoffen aansturen om met deze met minder zuurstof om te laten gaan, een bloedvat open te zetten of een immuunreactie te starten, op lange termijn kan het het weefsel aanpassen door bijvoorbeeld andere structuren te laten ontstaan. (extra bloedvaten om een tekort aan bloed te compenseren of collageen oriëntatie veranderen.)

Ongeacht hoe een wond is ontstaan, in het wondbed is door gebrek aan perfusie altijd sprake van tekorten aan zuurstof en bouwstenen, daarnaast is de extracellulaire structuur aan het wondoppervlak vaak verstoord waardoor ook veel vervorming van cellen optreedt. De structuren waarmee het lichaam normaal gesproken de toestand van het weefsel analyseert zoals sensoren, vaten en zenuwen ook beschadigd. De cellen rond om het wondbed, en dat is meer dan een paar millimeter, hebben door de schade aan het weefsel veel stress. Het zal duidelijk zijn dat beschadigde weefsels, structuren en cellen allemaal signalen uitzenden, deze kakofonie verstoord de communicatie tussen cellen en weefsels. Onder normale omstandigheden, dat wil zeggen in een jongere patiënt, zijn die problemen goed te hanteren. Zodra de wond groter en/of complexer is of de patiënt meer pathologie heeft kunnen de normaal soepel lopende processen voor de aanmaak van nieuw weefsel ineens niet meer soepel verlopen[9,10]. Sterker nog het kan zo zijn dat door “communicatiefouten” signalen verkeerd worden afgegeven of geïnterpreteerd. Dat lijkt wat abstract maar in de praktijk heet dat een chronische wond. Een niet goed aangestuurde ontstekingsreactie kan bijvoorbeeld tot dusdanig veel extra schade in het wondbed leiden dat de daarbij ontstane damps de (mogelijk steriele) ontsteking alleen maar verder aanjagen. Door het te laat reageren op zuurstofgebrek blijven bloedvaten soms te lang open staan waardoor reperfusion injury[11,12] kan ontstaan wat weer tot schade ergens anders in het lichaam kan leiden[13]. En door een wirwar aan signalen weten bijvoorbeeld stamcellen niet goed wat te doen. En dit zijn maar een paar van de vele oorzaken van een chronische wond.

Hoewel de onderliggende pathologie vaak verschillend is, kent de problematiek van chronische wonden op cel en weefselniveau verrassende overeenkomsten. Bovendien zijn veel van deze processen te beïnvloeden. Helaas ontbreekt het op de werkvloer vaak aan voldoende kennis over mogelijke interventies, bijvoorbeeld over pentoxifylline [14–16]. Er zijn nog tientallen gedocumenteerde medische interventies, zoals in dit voorbeeld pentoxifylline[16–18], beschikbaar. Ook op de andere 4 levels in de wondzorg is veel bekend.

Er is nog veel te ontdekken, gelukkig is ook veel nu al beschikbaar, het moet nog wel de werkvloer bereiken.

 

Literatuur:

1         Carafoli E, Krebs J. Why calcium? How calcium became the best communicator. J Biol Chem 2016;291:20849–57. doi:10.1074/jbc.R116.735894
2         Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging. Redox Biol 2014;2:936–44. doi:10.1016/j.redox.2014.07.005
3         Belaadi N, Aureille J, Guilluy C. Under Pressure: Mechanical Stress Management in the Nucleus. Cells 2016;5:27. doi:10.3390/cells5020027
4         Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24:R453–62. doi:10.1016/j.cub.2014.03.034
5         van Vliet AR, Agostinis P. When under pressure, get closer: PERKing up membrane contact sites during ER stress. Biochem Soc Trans 2016;44:499–504. doi:10.1042/BST20150272
6         Krebs J, Agellon LB, Michalak M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun 2015;460:114–21. doi:10.1016/j.bbrc.2015.02.004
7         Elks PM, Renshaw S a, Meijer AH, et al. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech 2015;8:1349–60. doi:10.1242/dmm.021865
8         Nikoletopoulou V, Markaki M, Palikaras K, et al. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta – Mol Cell Res 2013;1833:3448–59. doi:10.1016/j.bbamcr.2013.06.001
9         van Beek JHGM, Kirkwood TBL, Bassingthwaighte JB. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance. Interface Focus 2016;6:20150079. doi:10.1098/rsfs.2015.0079
10       Yin F, Sancheti H, Liu Z, et al. Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol 2015;0:n/a-n/a. doi:10.1113/JP270541
11       Manson PN, Anthenelli RM, Im MJ, et al. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann Surg 1983;198:87–90. doi:10.1097/00000658-198307000-00017
12       Lejay A, Meyer A, Schlagowski AI, et al. Mitochondria: Mitochondrial participation in ischemia-reperfusion injury in skeletal muscle. Int J Biochem Cell Biol 2014;50:101–5. doi:10.1016/j.biocel.2014.02.013
13       Mansour Z, Charles AL, Kindo M, et al. Remote effects of lower limb ischemia-reperfusion: Impaired lung, unchanged liver, and stimulated kidney oxidative capacities. Biomed Res Int 2014;2014. doi:10.1155/2014/392390
14       Sharma K, Ishaq M, Sharma G, et al. Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells. Biochem Pharmacol 2016;103:17–28. doi:10.1016/j.bcp.2015.12.018
15       Sharma R, Randhawa PK, Singh N, et al. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms. Eur J Pharmacol 2015;768:58–70. doi:10.1016/j.ejphar.2015.10.029
16       Jull A, Waters J, Arroll B. Pentoxifylline for treatment of venous leg ulcers: a systematic review. Lancet 2002;359:1550–4. doi:10.1016/S0140-6736(02)08513-6
17       Jull AB, Arroll B, Parag V, et al. Pentoxifylline for treating venous leg ulcers ( Review ). Cochrane database Syst Rev 2012;12:CD001733. doi:10.1002/14651858.CD001733.pub3
18       Falanga V, Fujitani RM, Diaz C, et al. Systemic treatment of venous leg ulcers with high doses of pentoxifylline: efficacy in a randomized, placebo-controlled trial. Wound Repair Regen 1999;7:208–13.

 

Brandstof voor de cel

Elegant artikel over het aanbieden van intracellulair ATP in een “level 3” diermodel. Het is alsof de brandstoftank wordt bijgevuld. Door de ischemie kunnen de cellen in de wond een energietekort hebben. Externe energie in de vorm van ATP in vetbolletjes reikt blijkbaar tot in de cel. Deze energie boost leidt tot snellere genezing in het konijnen oor. Niet alle cellen reageren hetzelfde. Granulatieweefsel lijkt met een soort hypergranulatie te reageren, blijkbaar is granulatieweefsel gevoeliger voor ATP of ontvangt het gewoon meer ATP omdat het aan de oppervlakte van het wondbed ligt. In het artikel wordt verder nog diepgaand naar een aantal parameters gekeken. Zij hebben nu eens gekeken naar de energie huishouding in het wondbed en de cel. Een verfrissend invalshoek op de wond genezing waar men tegenwoordig vooral concentreert op ontsteking en infectie. Wat zou er gebeuren als we deze “level 4” stofwisselingsbenadering combineren met een shotgun analyse van het proteoom of het metaboloom? Tot die tijd blijft onze kennis beperkt tot, zoals de auteurs een artikel uit 1943 (!) citeren: “Epithelialisatie begint na een latent periode van 3-6 dagen waarbij nauwelijks enige regeneratie optreedt; een gezond granulerend wondbed is nodig om de epithelialisatie te laten beginnen en de noodzaak tot regelmatige verbandwisselingen verlengt de latent periode omdat door bij het verwijderen van het verband ook de regenererende cellen worden verwijderd”. Het lijkt erop dat onze wond behandeling nog in de vorige eeuw zit. (slik)

Howard JD, Sarojini H, Wan R, Chien S. Rapid Granulation Tissue Regeneration by Intracellular ATP Delivery-A Comparison with Regranex. Yamamoto M, ed.PLoS ONE. 2014;9(3):e91787. doi:10.1371/journal.pone.0091787. /  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091787
E L Howes. The rate and nature of epithelization in wounds with loss of substance SGO 1943 Vol 76 (738-745)

Refuelling cells

Elegant article on delivering intracellular ATP in a “level 3” animal model.  It’s like refuelling the tank.  Due to the ischaemia the cells may have been somewhat starved for energy. External energy in the form of ATP in lipid vehicles, which apparently reaches inside the cell, leads to faster wound healing. Not all cells respond similarly, granulation tissue responds with a kind of hyper granulation. Apparently it is more sensible to the ATP or just receiving more because it is at the surface of the wound bed. They have looked in depth at the energy  metabolism in the cell and thoudn bed. A refreshing approach to non-healing wounds where these days reseach focusses on inflammation and infection. What would happen if we combine this level 4 metabolic approach, to a proteomic/metobolomic shotgun analysis.  Until then, as the authors cite a 1943 study: “Howes tested the healing effects of various drugs and concluded that: 1) epithelialization begins after a latent period of 3–6 days, during which the underlying connective tissue is hardly regenerated at all; 2) a suitable granulating base is necessary for epithelialization to begin; and 3) the requirement for frequent dressing changes prolongs the latent period due to tearing away of the regenerating cells”. It appears wound care is still in the previous century.

Howard JD, Sarojini H, Wan R, Chien S. Rapid Granulation Tissue Regeneration by Intracellular ATP Delivery-A Comparison with Regranex. Yamamoto M, ed.PLoS ONE. 2014;9(3):e91787. doi:10.1371/journal.pone.0091787. /  http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091787
E L Howes. The rate and nature of epithelization in wounds with loss of substance SGO 1943 Vol 76 (738-745)